SamplesDescriptionSedimentary RocksBuy essay
← Impact of Mass MediaBuddhism Cosmology →

Free Example of Sedimentary Rocks Essay

The nature of Sedimentary rocks is determined by geological processes that occur in the four main Earth surface environments (Mackenzie, 2005). Burial and diagenesis is determined by the site of sediment production, where interactions among bedrock geology occur, tectonic uplift and climate control weathering and erosion process. According to Mackenzie (2005) the “conditions of later burial, where diagenetic processes may further alter the texture and composition of buried sediments is another important factor that determines the formation of sediment rocks” (p.116). Mackenzie (2005) further mentioned that sedimentary rocks preserve records of multiple proxies that illuminate the process and conditions of sediment formation, transportation, deposition and burial.

In addition Tucker (2001) indicated that “considerations of sedimentary rocks do not stop with environmental interpretations” (p.5). Trucker continues to say that it is during diagenesis that an indurated rock is produced from unconsolidated, loose sediment (2001). He thus says that the diagenesis process starts immediately after deposition and continues until metamorphism takes over (Tucker, 2001). There is however a clear distinction between early diagenetic events, taking place from sedimentation until shallow burial and late diagenetic events which occur during deep burial and subsequent uplifts (Tucker, 2001).

Type of assignment
Writer level
Title of your paper
Total price

Burial and diagenesis processes are important because they can considerably modify sedimentary rocks in both their composition and texture and also in it has been observed that in rear cases the original structures are destroyed completely (Tucker, 2001). In his further studies Tucker (2001) established that diagenesis events also affect a sediments porosity and permeability which are the properties that control a sediments potential as a reservoir for oil, gas or water. Geochemical analyses of sedimentary rocks especially limestone and shales can be used to give useful information on the environment. Some of the diagenetic processes include compaction, recrystallization, dissolution, replacement, authigenesis and cementation (Tucker, 2001). He continues to say that sedimentary rocks should be described within their lithological context such as composition and grain size (Tucker, 2001).

Purser & Bosence (1998) indicated that important evaporate sequences are commonly associated with rift basins and especially those located in lower palaeolatitudes (p.409). Purser & Bosence (1998) further indicated that the” association between evaporate sedimentation and the geographically and chemically restricted sedimentation exist during the initial stages of a rift basin and ocean formation” (p.409). Therefore according to their studies the favorable combination of climate, drainage and morphology which are necessary for massive evaporate development is favored by narrow, elongate depressions supplied with sea water via a vertically or laterally restricted connection with sea or ocean (Purser & Bosence, 1998)  

Their research established that a well known sequence of existence of evaporates has been shown to exist in the lower Cretaceous of the West Africa and Brazilian margins. Purser & Bosence (1998) continue to say that other areas include the Triassic of the North Atlantic margins notably in Morocco. On the other hand the Miocene evaporates of the Red Sea and Gulf of Suez has been well known due to the presence and exploration of petroleum in the basin. Schreiber, Lugli & Geological Society of London (2007) also noted that marine conditions continued throughout the early Miocene and the Serikagni, Euphrates, Dhian Anhydrite and Jeribe formations were deposited in marginal basins (p. 68).  As a result this gave rise to the cyclic deposition of evaporates in the Middle Miocene Fat’ha formation.

Condie (1997) established that evaporate formation has for a long period of time been used in the mining of petroleum products such as oil and gas. Evaporite is therefore considered as one of the major energy deposits around the globe. Both oil and gas are formed in foreare and back-are basins which can trap and preserve organic matter and where geothermal heat facilitates conversion of organic matter into hydrocarbons Condie (1997). He also established that the majority of the petroleum products that is oil and gas reserves in the world have formed either in intracratonic basins or passive continental margins.

Due to high geothermal ghradients beneath the opening rift and the increasing pressure due to burial of sediments the processes facilitate the conversion of organic matter into oil and gas. Condie (1997) also noted that oil and gas may also be trapped in structural traps as they move upward in response to increasing pressures and temperatures (Condie, 1997). In addition Melvin (1991) noted that there is a direct comparison of oil volumes to evaporate volumes throughout geologic time (p.367). Melvin continues to say that a large and appropriate reservoir for evaporites is associated with the presence of petroleum deposits as shown in the diagram figure.1.0. Melvin (1991) commented that “many petroleum occurances are may be directly associated with an evaporate environment that only produced carbonate sediment and thus would not be included in the evaporite volume data” (p.368).

Tucker (2001) established that the generation of petroleum is one of the stages in the alteration of certain types of organic matter buried in sediments. Tucker (2001) outlined that “petroleum can occur in any porous rocks and that most of the world’s oil is located in sedimentary rocks” (p. 208). As shown in the figure 2.0 below petroleum is derived largely from the maturation of organic matter deposited in fine grained marine sediments. Many marine hydrocarbon source rocks are formed at times of high organic productivity of marine plankton, coinciding with transgressive events and high stands of sea level (Tucker, 2001). Tucker, M.E (2001) Sedimentary petrology: an introduction to the origin of Sedimentary rocks 3rd ed  Hoboken, NJ: Wiley-Blackwell. 

In conclusion, Nely (1994) said that a good knowledge of evaporite accumulations is very useful in petroleum exploration. Several authors have established on the relations between hydrocarbon accumulations of exploitable magnitude and evaporites. Nely (1994) also continues to argue that petroleum exploration provides access to the most interesting zones and basins with evaporites. Nely (1994) also indicated that the most the “association regarding the frequency of evaporites and the central and subsiding areas of basins gives enough evidence of the associations between evaporites and petroleum exploration” (p.189). Nely in conclusion argued that “the good quality of petroleum exploration data provides good knowledge of evaporite sequences” (p. 189). He continues to argue that given the characteristics of salt rocks a general interpretation of evaporite rocks gives enough evidence.

Code: writers15

Related essays

  1. Buddhism Cosmology
  2. Ethnic Group Conflict
  3. Impact of Mass Media
  4. German Normes
View all